Russia and Energy Security

The Aftermath of the Russian Presidential Elections: 38th Annual Outreach Conference in Slavic, East European, and Eurasian Studies

Barry W. Ickes

The Pennsylvania State University

April 28, 2012
Is Russia’s energy policy driven by imperatives of energy security?

Yergin: “Although in the developed world the usual definition of energy security is simply the availability of sufficient supplies at affordable prices, different countries interpret what that concept means for them differently.” Exporters need “security of demand” because the revenues are so central to their treasuries; Russia wants state control over production and pipelines; China and India need to adjust to global markets; Japan needs to offset its own lack of domestic supplies; Europe seeks to manage its dependence on imported natural gas. True, but what do these countries understand by “energy security”? Is there any meaning to it aside from war?
Is Russia’s energy policy driven by imperatives of energy security?

Confusion about meaning
Is Russia’s energy policy driven by imperatives of energy security?

Confusion about meaning

Yergin:
Energy Security

- Is Russia’s energy policy driven by imperatives of energy security?
- Confusion about meaning
- Yergin:
 - "Although in the developed world the usual definition of energy security is simply the availability of sufficient supplies at affordable prices, different countries interpret what that concept means for them differently."
Is Russia’s energy policy driven by imperatives of energy security?

Confusion about meaning

Yergin:

"Although in the developed world the usual definition of energy security is simply the availability of sufficient supplies at affordable prices, different countries interpret what that concept means for them differently."

Exporters need “security of demand” because the revenues are so central to their treasuries; Russia wants state control over production and pipelines; China and India need to adjust to global markets; Japan needs to offset its own lack of domestic supplies; Europe seeks to manage its dependence on imported natural gas.
Is Russia’s energy policy driven by imperatives of energy security?

Confusion about meaning

Yergin:

"Although in the developed world the usual definition of energy security is simply the availability of sufficient supplies at affordable prices, different countries interpret what that concept means for them differently."

Exporters need “security of demand” because the revenues are so central to their treasuries; Russia wants state control over production and pipelines; China and India need to adjust to global markets; Japan needs to offset its own lack of domestic supplies; Europe seeks to manage its dependence on imported natural gas.

True, but what do these countries understand by "energy security"
Is Russia’s energy policy driven by imperatives of energy security?

Confusion about meaning

Yergin:

"Although in the developed world the usual definition of energy security is simply the availability of sufficient supplies at affordable prices, different countries interpret what that concept means for them differently."

Exporters need “security of demand” because the revenues are so central to their treasuries; Russia wants state control over production and pipelines; China and India need to adjust to global markets; Japan needs to offset its own lack of domestic supplies; Europe seeks to manage its dependence on imported natural gas.

True, but what do these countries understand by "energy security"

Is there any meaning to it aside from war?
More meaningful to talk about price volatility
More meaningful to talk about price volatility

Dvir-Rogoff Three Epochs
More meaningful to talk about price volatility

Dvir-Rogoff Three Epochs

Sample Statistics of Oil Prices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (2009$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>50.9</td>
<td>17.2</td>
<td>44.7</td>
<td>27.8</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>25.3</td>
<td>5.1</td>
<td>22.1</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Annual Price Changes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>39.0%</td>
<td>14.2%</td>
<td>22.1%</td>
<td>19.0%</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>27.5%</td>
<td>13.7%</td>
<td>22.8%</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

We are unlikely to transit back to low volatility regime
More meaningful to talk about price volatility

Dvir-Rogoff Three Epochs

Sample Statistics of Oil Prices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (2009$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>50.9</td>
<td>17.2</td>
<td>44.7</td>
<td>27.8</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>25.3</td>
<td>5.1</td>
<td>22.1</td>
<td>20.2</td>
</tr>
<tr>
<td>Annual Price Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>39.0%</td>
<td>14.2%</td>
<td>22.1%</td>
<td>19.0%</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>27.5%</td>
<td>13.7%</td>
<td>22.8%</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

We are unlikely to transit back to low volatility regime
Real Oil Price Volatility
Crucial to think about resource rents ≡ market value less actual cost
Resource rents

- Crucial to think about resource rents \equiv market value less actual cost
- Resource rents in Russia are huge and drive the economy
Resource rents

- Crucial to think about resource rents \equiv market value less actual cost
- Resource rents in Russia are huge and drive the economy
- They are much bigger than export income, oil profits, or any other measure
Resource rents

- Crucial to think about resource rents \equiv market value less actual cost
- Resource rents in Russia are huge and drive the economy
- They are much bigger than export income, oil profits, or any other measure
- Control over the distribution of rents is *the* central problem of Russian Political Economy
Resource rents

- Crucial to think about resource rents \equiv market value less actual cost
- Resource rents in Russia are huge and drive the economy
- They are much bigger than export income, oil profits, or any other measure
- Control over the distribution of rents is *the* central problem of Russian Political Economy
- Future of oil and gas rents driven by the volatility of oil prices
Figure: Russian Oil and Gas Rents Since 1950 (Oil rents in black, natural gas rents in blue)
Components of Rents

Categories of Rent Distribution

- Formal Profits (FP)
- Informal Profits (IP)
- Formal Taxes (FT)
- Informal Taxes (IT)
- Price Subsidies (PS)
- Excess Costs (EC)

Total Rent

- Pre-tax profit
- Reported cost of production
Importance of Resource rents

Russian Oil and Gas Rents and GDP, 1970-2030

- **Real GDP (1970=100)**
- **Oil & Gas Rents (2009 USD)**

- **GDP**
- **Oil and Gas Rents**
Implications for Russia

- Implication: What Russia must worry about is the size of current and especially future rents.
Implication: What Russia must worry about is the size of current and especially future rents

Future rents depend on future prices and future output levels
Implication: What Russia must worry about is the size of current and especially future rents.

- Future rents depend on future prices and future output levels.
- Especially fear of collapse of prices.
Implication: What Russia must worry about is the size of current and especially future rents

- Future rents depend on future prices and future output levels

Especially fear of collapse of prices

- echo of past experience
Implications for Russia

- Implication: What Russia must worry about is the size of current and especially future rents
 - Future rents depend on future prices and future output levels
- Especially fear of collapse of prices
 - Echo of past experience
- There is also a need to secure supply channels for gas by avoiding transit states (return to later)
Implications for Russia

- Implication: What Russia must worry about is the size of current and especially future rents
 - Future rents depend on future prices and future output levels
- Especially fear of collapse of prices
 - echo of past experience
- there is also a need to secure supply channels for gas by avoiding transit states (return to later)
- Russia frames this as a security issue especially by alleging that its adversaries, US and NATO, can manipulate world oil prices.
Russian Fear: Price Manipulation

- Russian Security Council Secretary Nikolai Patrushev, January 11, 2012 on oil price manipulation:

 "The U.S. is persistently seeking to sustain its economic, political and military domination in the world. ... There are well-known statements of American politicians about the need to put Russia’ s energy, water and other resources under U.S. control. ... "The manipulation of hydrocarbon prices may in certain conditions be a powerful economic weapon ... Saudi Arabia made oil prices fall to weaken the USSR. The fall of prices was not the only reason, but it was an important one, why the Soviet state collapsed."

What if the US could manipulate prices this way?

This is a macroeconomic issue – but too much focus on budget

Key issue is the rent not the budget

CRIFES (The Pennsylvania State University)
Russian Fear: Price Manipulation

- Russian Security Council Secretary Nikolai Patrushev, January 11, 2012 on oil price manipulation:
 - “The U.S. is persistently seeking to sustain its economic, political and military domination in the world. ... There are well-known statements of American politicians about the need to put Russia’s energy, water and other resources under U.S. control. ... “The manipulation of hydrocarbon prices may in certain conditions be a powerful economic weapon ... Saudi Arabia made oil prices fall to weaken the USSR. The fall of prices was not the only reason, but it was an important one, why the Soviet state collapsed.”
Russian Security Council Secretary Nikolai Patrushev, January 11, 2012 on oil price manipulation:

“The U.S. is persistently seeking to sustain its economic, political and military domination in the world. ... There are well-known statements of American politicians about the need to put Russia’s energy, water and other resources under U.S. control. ... “The manipulation of hydrocarbon prices may in certain conditions be a powerful economic weapon ... Saudi Arabia made oil prices fall to weaken the USSR. The fall of prices was not the only reason, but it was an important one, why the Soviet state collapsed.”

What if the US could manipulate prices this way?
Russian Fear: Price Manipulation

- Russian Security Council Secretary Nikolai Patrushev, January 11, 2012 on oil price manipulation:
 - “The U.S. is persistently seeking to sustain its economic, political and military domination in the world. ... There are well-known statements of American politicians about the need to put Russia’s energy, water and other resources under U.S. control. ... “The manipulation of hydrocarbon prices may in certain conditions be a powerful economic weapon ... Saudi Arabia made oil prices fall to weaken the USSR. The fall of prices was not the only reason, but it was an important one, why the Soviet state collapsed.”

- What if the US could manipulate prices this way?
 - This is a macroeconomic issue – but too much focus on budget
Russian Fear: Price Manipulation

- Russian Security Council Secretary Nikolai Patrushev, January 11, 2012 on oil price manipulation:
 - "The U.S. is persistently seeking to sustain its economic, political and military domination in the world. ... There are well-known statements of American politicians about the need to put Russia’s energy, water and other resources under U.S. control. ... “The manipulation of hydrocarbon prices may in certain conditions be a powerful economic weapon ... Saudi Arabia made oil prices fall to weaken the USSR. The fall of prices was not the only reason, but it was an important one, why the Soviet state collapsed.”

- What if the US could manipulate prices this way?
 - This is a macroeconomic issue – but too much focus on budget
 - Key issue is the rent not the budget
Stabilization Fund and the Iceberg

Russian Oil & Gas Rents 1970-2007

Real (2007) USD blns/yr

Stabilization Fund

CRIFES (The Pennsylvania State University) Energy Security April 28, 2012 13 / 47
Total Rent and Stabilization Fund, 2003-2011

- Total Rent for Year
- Cumulative Amount in Stabilization Fund at Year End
The real problem for Russia is a sustained decline in rents.
The Real Problem

- The real problem for Russia is a sustained decline in rents.
 - Long-term price decline
The real problem for Russia is a sustained decline in rents.

- Long-term price decline
- Decline in future output
The Real Problem

- The real problem for Russia is a sustained decline in rents.
 - Long-term price decline
 - Decline in future output
- No macro policies can deal with these issues.
The real problem for Russia is a sustained decline in rents.

- Long-term price decline
- Decline in future output

No macro policies can deal with these issues.

- self-insurance is costly and can cope with only transitory shocks
The real problem for Russia is a sustained decline in rents.

- Long-term price decline
- Decline in future output

No macro policies can deal with these issues.

- self-insurance is costly and can cope with only transitory shocks
- Investment needs for long-term supply are great, and risky given price volatility
The Real Problem

- The real problem for Russia is a sustained decline in rents.
 - Long-term price decline
 - Decline in future output

- No macro policies can deal with these issues.
 - Self-insurance is costly and can cope with only transitory shocks
 - Investment needs for long-term supply are great, and risky given price volatility

- Solution is risk sharing
Russia’s Future Oil Output without Investment

Russian Oil Output, 1945-2030

Domestic Gas Production declining. Yamal and East Siberia requires huge investments.
Domestic Gas Production declining. Yamal and East Siberia requires huge investments.

Russia has to invest in Nordstream and South Stream to assure European markets and counter their efforts to diversify supply.
Russian Gas

- Domestic Gas Production declining. Yamal and East Siberia requires huge investments
- Russia has to invest in Nordstrom and South Stream to assure European markets and counter their efforts to diversify supply
- Long-term gas contracts tied to oil prices transmitted volatility. But gas prices are coming under more pressure due to alternative supplies.
Russian Gas

- Domestic Gas Production declining. Yamal and East Siberia requires huge investments.
- Russia has to invest in Nordstream and South Stream to assure European markets and counter their efforts to diversify supply.
- Long-term gas contracts tied to oil prices transmitted volatility. But gas prices are coming under more pressure due to alternative supplies.
- Russia needs serious investment in gas industry to maintain this key rent source.
Russia has a big problem because its economy is so dependent on this one resource, which is characterized by price uncertainty.
Russia has a big problem because its economy is so dependent on this one resource, which is characterized by price uncertainty.

- Its problem is amplified because it is a HC producer subject to the behavior of the LC producers.
Russia has a big problem because its economy is so dependent on this one resource, which is characterized by price uncertainty.

- Its problem is amplified because it is a HC producer subject to the behavior of the LC producers
- Requires big infrastructure investment to open up East Siberia
• Russia has a big problem because its economy is so dependent on this one resource, which is characterized by price uncertainty.
 • Its problem is amplified because it is a HC producer subject to the behavior of the LC producers
 • Requires big infrastructure investment to open up East Siberia
 • This is a big problem, but it could in theory be solved to give Russia the most efficient investment path
Russia has a big problem because its economy is so dependent on this one resource, which is characterized by price uncertainty.

- Its problem is amplified because it is a HC producer subject to the behavior of the LC producers
- Requires big infrastructure investment to open up East Siberia
- This is a big problem, but it could in theory be solved to give Russia the most efficient investment path

The real problem is that Russia has on top of its efficiency issues some major (real or imagined) security concerns that shape its behavior as well.
Modernization Difficulties

- It is fashionable to talk of “diversification” of the Russian economy away from oil and gas,
Modernization Difficulties

- It is fashionable to talk of “diversification” of the Russian economy away from oil and gas,
 - but this is the least likely outcome for the country’s economic future.
It is fashionable to talk of “diversification” of the Russian economy away from oil and gas,

- but this is the least likely outcome for the country’s economic future.

Economic success will require a continued focus on resource industries.
It is fashionable to talk of “diversification” of the Russian economy away from oil and gas, but this is the least likely outcome for the country’s economic future.

Economic success will require a continued focus on resource industries.

Russia could obtain higher growth if the oil and gas sectors were truly modern — freed from the obligation to share rents through the rent distribution chains.
It is fashionable to talk of “diversification” of the Russian economy away from oil and gas, but this is the least likely outcome for the country’s economic future.

Economic success will require a continued focus on resource industries.

Russia could obtain higher growth if the oil and gas sectors were truly modern — freed from the obligation to share rents through the rent distribution chains.

Current efforts for “modernization” and “diversification,” by contrast, do not challenge the rent distribution system.
It is fashionable to talk of “diversification” of the Russian economy away from oil and gas,

but this is the least likely outcome for the country’s economic future.

Economic success will require a continued focus on resource industries.

Russia could obtain higher growth if the oil and gas sectors were truly modern — freed from the obligation to share rents through the rent distribution chains.

Current efforts for “modernization” and “diversification,” by contrast, do not challenge the rent distribution system.

The kinds of investment envisioned in those efforts will preserve and reinforce the rent distribution chains.
Medvedev Portfolio Allocation Problem

- Toy Model
Toy Model

Suppose Medvedev chooses $\alpha \in (0, 1)$, the manufacturing share to solve

$$\max_{\alpha} \int_{R \times R} U(W(1 + \alpha r_{man} + (1 - \alpha) r_{oil}) f(r_{man}, r_{oil}) \, dr_{man} \, dr_{oil}$$
Medvedev Portfolio Allocation Problem

- Toy Model
- Suppose Medvedev chooses $\alpha \in (0, 1)$, the manufacturing share to solve

$$\max_{\alpha} \int_{R \times R} U(W(1 + \alpha r_{man} + (1 - \alpha) r_{oil})f(r_{man}, r_{oil})dr_{man}dr_{oil}$$

- letting utility be CRRA we can normalize $W = 1$, so that:
Medvedev Portfolio Allocation Problem

- Toy Model
- Suppose Medvedev chooses $\alpha \in (0, 1)$, the manufacturing share to solve

$$\max_{\alpha} \int_{R \times R} U(W(1 + \alpha r_{man} + (1 - \alpha)r_{oil})f(r_{man}, r_{oil})dr_{man}dr_{oil}$$

- letting utility be CRRA we can normalize $W = 1$, so that:

$$U(x) = \frac{x^{1-\sigma}}{1-\sigma} \quad x \geq 0$$
Toy Model

Suppose Medvedev chooses $\alpha \in (0, 1)$, the manufacturing share to solve

$$\max_{\alpha} \int_{R \times R} U(W(1 + \alpha r_{\text{man}} + (1 - \alpha) r_{\text{oil}}) f(r_{\text{man}}, r_{\text{oil}}) dr_{\text{man}} dr_{\text{oil}}$$

Letting utility be CRRA we can normalize $W = 1$, so that:

$$U(x) = \frac{x^{1-\sigma}}{1-\sigma} \quad x \geq 0$$

Need expected returns and volatilities to compute optimal portfolio.
What is the optimal investment strategy?
What is the optimal investment strategy?

Use US value added data (BEA annual, 1995-2009) for manufacturing, oil and service sectors
What is the optimal investment strategy?
Use US value added data (BEA annual, 1995-2009) for manufacturing, oil and service sectors
rates of returns and covariances
What is the optimal investment strategy?

Use US value added data (BEA annual, 1995-2009) for manufacturing, oil and service sectors

rates of returns and covariances

rates of return highest in o, lowest in m.
What is the optimal investment strategy?

Use US value added data (BEA annual, 1995-2009) for manufacturing, oil and service sectors

rates of returns and covariances

- rates of return highest in \(o \), lowest in \(m \).
- services least risky, oil most risky
Optimal Portfolio Shares

Optimal portfolio shares for 1995-2009 data

<table>
<thead>
<tr>
<th>Rate of Risk Aversion</th>
<th>α^*_M</th>
<th>α^*_O</th>
<th>α^*_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>.5765</td>
<td>.4235</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>.2490</td>
<td>.7510</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>.1352</td>
<td>.8648</td>
</tr>
</tbody>
</table>
Optimal portfolio shares for 1995-2009 data

<table>
<thead>
<tr>
<th>Rate of Risk Aversion</th>
<th>α^*_M</th>
<th>α^*_O</th>
<th>α^*_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0.5765</td>
<td>0.4235</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.2490</td>
<td>0.7510</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.1352</td>
<td>0.8648</td>
</tr>
</tbody>
</table>

- Need enormous increase in returns to manufacturing to get positive α^*_M
Optimal Portfolio Shares

Optimal portfolio shares for 1995-2009 data

<table>
<thead>
<tr>
<th>Rate of Risk Aversion</th>
<th>α^*_M</th>
<th>α^*_O</th>
<th>α^*_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0.5765</td>
<td>0.4235</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.2490</td>
<td>0.7510</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.1352</td>
<td>0.8648</td>
</tr>
</tbody>
</table>

- Need enormous increase in returns to manufacturing to get positive α^*_M
- Skip M move directly to S, but even this requires high risk aversion
Should Russia Have Diversified?

The bar chart shows the real dollar GDP (1999=100) for Russia, China + Hong Kong, India, and Brazil from 1999 to 2009.
Which BRIC Would You Invest In?
A Model

- An international real business cycles model with

A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>export</td>
<td>import</td>
</tr>
<tr>
<td>Foreign</td>
<td>import</td>
<td>export</td>
</tr>
</tbody>
</table>
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>export</td>
<td>import</td>
</tr>
<tr>
<td>Foreign</td>
<td>import</td>
<td>export</td>
</tr>
</tbody>
</table>

- Regimes:
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>export</td>
<td>import</td>
</tr>
<tr>
<td>Foreign</td>
<td>import</td>
<td>export</td>
</tr>
</tbody>
</table>

- Regimes:
 - Financial autarky
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>export</td>
<td>import</td>
</tr>
<tr>
<td>Foreign</td>
<td>import</td>
<td>export</td>
</tr>
</tbody>
</table>

- Regimes:
 - Financial autarky
 - Bond economy
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>export</td>
<td>import</td>
</tr>
<tr>
<td>Foreign</td>
<td>import</td>
<td>export</td>
</tr>
</tbody>
</table>

- Regimes:
 - Financial autarky
 - Bond economy
 - Portfolio investment (FPI)
A Model

- An international real business cycles model with
 - exogenous shocks to the price of energy
 - two countries, two tradable intermediate goods:

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>export</td>
<td>import</td>
</tr>
<tr>
<td>Foreign</td>
<td>import</td>
<td>export</td>
</tr>
</tbody>
</table>

- Regimes:
 - Financial autarky
 - Bond economy
 - Portfolio investment (FPI)
 - Long-term equity investments (FDI)
Log energy prices follow an AR(1) process:

\[
\log p_{et} = \rho \log p_{e,t-1} + u_t
\]

\[
u_t \sim N(0, \sigma_u^2)
\]

\[
\rho \in (0, 1)
\]
Model

- Log energy prices follow an AR(1) process:

\[\log p_{et} = \rho \log p_{e,t-1} + u_t \]

\[u_t \sim N(0, \sigma_u^2) \]

\[\rho \in (0, 1) \]

- Non-tradable final good:

\[Y^H_{ft} = \left(\gamma_1 \left(Y^H_{mt} \right)^{\frac{\gamma_2-1}{\gamma_2}} + (1 - \gamma_1) \left(Y^H_{et} \right)^{\frac{\gamma_2-1}{\gamma_2}} \right)^{\frac{\gamma_2}{\gamma_2-1}} \]
Model

- Log energy prices follow an AR(1) process:

\[
\log p_{et} = \rho \log p_{e,t-1} + u_t \\
u_t \sim N(0, \sigma_u^2) \\
\rho \in (0, 1)
\]

- Non-tradable final good:

\[
Y_{ft} = \left(\gamma_1 (y_{mt}^{H})^{\frac{\gamma_2-1}{\gamma_2}} + (1 - \gamma_1)(y_{et}^{H})^{\frac{\gamma_2-1}{\gamma_2}} \right)^{\frac{\gamma_2}{\gamma_2-1}}
\]

- Final good is both consumption and investment good
Home has a fixed manufacturing capital (K^H_m), foreign has fixed energy reserves, (K^F_e)
Home has a fixed manufacturing capital \((K^H_m)\), foreign has fixed energy reserves, \((K^F_e)\)

Production of intermediate goods

\[
\begin{align*}
Y^H_{et} &= A^H_e (K^H_{et-1})^\alpha \\
Y^H_{mt} &= A^H_m (K^H_m)^\alpha
\end{align*}
\]

\[
\begin{align*}
Y^F_{et} &= A^F_m (K^F_e)^\alpha \\
Y^F_{mt} &= A^F_m (K^F_{mt-1})^\alpha
\end{align*}
\]
Model

- Home has a fixed manufacturing capital (\overline{K}_m^H), foreign has fixed energy reserves, (\overline{K}_e^F)
- Production of intermediate goods

\[
\begin{align*}
Y_{et}^H &= A_e^H (K_{et-1}^H)\alpha \\
Y_{et}^F &= A_m^F (\overline{K}_e^F)\alpha \\
Y_{mt}^H &= A_m^H (\overline{K}_m^H)\alpha \\
Y_{mt}^F &= A_m^F (K_{mt-1}^F)\alpha
\end{align*}
\]

- Intermediates are used as input and exported:

\[Y_{st}^i = y_{st}^i + x_{st}^i\]
Model

Households own the capital, make savings and consumption decision to maximize

\[E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t^H)^{1-\nu}}{1-\nu} \right) \]

subject to the budget constraint

\[p_{ft} \left(c_t^H + I_{et}^H + \delta_m K_m^H + \frac{\psi_b}{2} b_{Ht}^2 + \frac{\psi_a}{2} \sum_{i=H} F \sum_{s=e}^m (a_{Ht}^s - a_{Ht}^s)^2 \right) \]

\[+ b_{Ht} + \sum_{i=H}^F \sum_{s=e}^m a_{Ht}^s p_{at}^s \]

\[= R_{mt}^H K_m^H + R_{et}^H K_{et}^{H-1} \]

\[+ \sum_{i=H}^F \sum_{s=e}^m a_{Ht-1}^s (p_{at}^s + d_{t}^s) + R_{bt-1} b_{Ht-1} \]
In equilibrium
In equilibrium

Households and firms maximize,
In equilibrium

- Households and firms maximize,
- Markets clear,

\[
\begin{align*}
 b_{Ht} + b_{Ft} &= 0 \\
 a_{Ft}^{si} + a_{Ht}^{si} &= 1, \quad s \in \{m, e\}, \quad i \in \{H, F\}
\end{align*}
\]
In equilibrium

- Households and firms maximize,
- Markets clear,

\[
\begin{align*}
 b_{Ht} + b_{Ft} &= 0 \\
 a_{Ft}^{si} + a_{Ht}^{si} &= 1, \quad s \in \{m, e\}, \quad i \in \{H, F\}
\end{align*}
\]

- Countries have balance of payments

\[
\chi_{mt}^i + p_{et}^i \chi_{et}^i = b_{it} - R_{bt-1} b_{it-1} + \sum_{j=H}^{F} \sum_{s=e}^{m} p_{at}^{sj} (a_{it}^{sj} - a_{it-1}^{sj})
\]
Four Financial regimes:
Model

- Four Financial regimes:
 1. Autarky:

\[\psi_a \to \infty, \quad \psi_b \to \infty, \quad a^s_{ij} = a^s_{ji} = 0, \quad i \neq j \]
Model

- Four Financial regimes:

 1. Autarky:

 \[\psi_a \to \infty, \quad \psi_b \to \infty, \quad a_{ji}^s = a_{ij}^s = 0, \quad i \neq j\]

 2. Bond economy:

 \[\psi_a \to \infty, \quad \psi_b \text{ finite}, \quad a_{ji}^s = a_{ij}^s = 0, \quad i \neq j\]
Model

- Four Financial regimes:

 1. **Autarky:**
 \[\psi_a \to \infty, \quad \psi_b \to \infty, \quad a_{ij}^s = a_{ji}^s = 0, \quad i \neq j \]

 2. **Bond economy:**
 \[\psi_a \to \infty, \quad \psi_b \text{ finite}, \quad a_{ij}^s = a_{ji}^s = 0, \quad i \neq j \]

 3. **Portfolio investment (FPI)**
 \[\psi_a \text{ finite}, \quad \psi_b \text{ finite}, \quad a_{ij}^s = a_{ji}^s = 0, \quad i \neq j \]
Model

- Four Financial regimes:

1. **Autarky:**
 \[\psi_a \to \infty, \quad \psi_b \to \infty, \quad \bar{a}_j^i = \bar{a}_i^j = 0, \quad i \neq j \]

2. **Bond economy:**
 \[\psi_a \to \infty, \quad \psi_b \text{ finite}, \quad \bar{a}_j^i = \bar{a}_i^j = 0, \quad i \neq j \]

3. **Portfolio investment (FPI)**
 \[\psi_a \text{ finite}, \quad \psi_b \text{ finite}, \quad \bar{a}_j^i = \bar{a}_i^j = 0, \quad i \neq j \]

4. **Long-term equity investment (FDI):**
 \[\psi_a \text{ finite}, \quad \psi_b \text{ finite}, \quad \bar{a}_j^i > 0, \quad \bar{a}_i^j > 0 \]
Computation

- Solve the model using a second-order approximation to policy functions and laws of motion

\[E f(y, y_0, x, x_0, u, \sigma) = 0 \]

where \(u \) is the shock, \(x \) is vector of endogenous state variables, \(y \) is endogenous choice variables, \(\sigma \) captures uncertainty.

Solve for the coefficients of the Taylor expansion of the policy functions and law of motion:

\[y = g(x, u, \sigma) \]

\[x_0 = h(x, \sigma) + \sigma u \]

around the deterministic steady state (\(\sigma = 0 \)).
Solve the model using a second-order approximation to policy functions and laws of motion

Express first-order conditions as

\[Ef(y, y', x, x', u; \sigma) = 0 \]

where \(u \) is the shock, \(x \) is vector of endogenous state variables, \(y \) is endogenous choice variables, \(\sigma \) captures uncertainty.
Compute the model using a second-order approximation to policy
functions and laws of motion.

Express first-order conditions as

\[Ef(y, y', x, x', u; \sigma) = 0 \]

where \(u \) is the shock, \(x \) is vector of endogenous state variables, \(y \) is
endogenous choice variables, \(\sigma \) captures uncertainty.

Solve for the coefficients of the Taylor expansion of the policy
functions

\[y = g(x, u, \sigma) \]
Computation

- Solve the model using a second-order approximation to policy functions and laws of motion.
- Express first-order conditions as

\[Ef(y, y', x, x', u; \sigma) = 0 \]

where \(u \) is the shock, \(x \) is vector of endogenous state variables, \(y \) is endogenous choice variables, \(\sigma \) captures uncertainty.
- Solve for the coefficients of the Taylor expansion of the policy functions

\[y = g(x, u, \sigma) \]

and law of motion

\[x' = h(x, \sigma) + \sigma u \]
Computation

- Solve the model using a second-order approximation to policy functions and laws of motion.
- Express first-order conditions as
 \[Ef(y, y', x, x', u; \sigma) = 0 \]
 where \(u \) is the shock, \(x \) is vector of endogenous state variables, \(y \) is endogenous choice variables, \(\sigma \) captures uncertainty.
- Solve for the coefficients of the Taylor expansion of the policy functions
 \[y = g(x, u, \sigma) \]
- and law of motion
 \[x' = h(x, \sigma) + \sigma u \]
- around the deterministic steady state \((\sigma = 0) \).
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>discount factor</td>
<td>0.96</td>
</tr>
<tr>
<td>ρ</td>
<td>persistence of oil shocks</td>
<td>0.95</td>
</tr>
<tr>
<td>σ_u</td>
<td>std deviation of oil price shocks</td>
<td>0.05</td>
</tr>
<tr>
<td>γ_1</td>
<td>input share of manufacturing</td>
<td>0.9</td>
</tr>
<tr>
<td>γ_2</td>
<td>elasticity of substitution (m&e)</td>
<td>0.1</td>
</tr>
<tr>
<td>α</td>
<td>returns to capital</td>
<td>0.36</td>
</tr>
<tr>
<td>δ_m</td>
<td>depreciation of manufacturing capital</td>
<td>0.05</td>
</tr>
<tr>
<td>δ_e</td>
<td>depletion of energy reserves</td>
<td>0.03</td>
</tr>
<tr>
<td>ν</td>
<td>risk aversion</td>
<td>2</td>
</tr>
</tbody>
</table>
Calibration

- Normalize $A^H_m = A^F_e = 1$
Calibration

- Normalize $A^H_m = A^F_e = 1$
- 4 remaining parameters: $(A^H_e, A^F_m, K^H_m, K^F_e)$
Calibration

- Normalize $A^H_m = A^F_e = 1$
- 4 remaining parameters: $(A^H_e, A^F_m, K^H_m, K^F_e)$
- Minimize the distance to 4 targets:
Calibration

- Normalize $A^H_m = A^F_e = 1$
- 4 remaining parameters: $(A^H_e, A^F_m, K^H_m, K^F_e)$
- Minimize the distance to 4 targets:

<table>
<thead>
<tr>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative GDP (per capita)</td>
<td>3.92</td>
<td>3.96</td>
</tr>
<tr>
<td>Home Share of Energy VA Exported</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>Home Manufacturing VA/Energy VA</td>
<td>0.64</td>
<td>0.59</td>
</tr>
<tr>
<td>Foreign Manufacturing VA/Energy VA</td>
<td>11.11</td>
<td>18.14</td>
</tr>
</tbody>
</table>
Calibration

- Normalize $A^H_m = A^F_e = 1$
- 4 remaining parameters: $(A^H_e, A^F_m, K^H_m, K^F_e)$
- Minimize the distance to 4 targets:

<table>
<thead>
<tr>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative GDP (per capita)</td>
<td>3.92</td>
<td>3.96</td>
</tr>
<tr>
<td>Home Share of Energy VA Exported</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>Home Manufacturing VA/Energy VA</td>
<td>0.64</td>
<td>0.59</td>
</tr>
<tr>
<td>Foreign Manufacturing VA/Energy VA</td>
<td>11.11</td>
<td>18.14</td>
</tr>
</tbody>
</table>

- for $(A^H_e, A^F_m, K^H_m, K^F_e) = (2, 6.85, 4.25, 0.85)$
Results: A Sequence of Shocks

Energy Prices

Periods

Energy Prices

Periods
Results: Home Consumption

![Home Consumption Graph]

- **Consumption**
- **Periods**
- **FPI**
- **Bond**
- **Autarky**
- **FDI**
With greater financial integration, energy production is more volatile.
With greater financial integration, energy production is more volatile.

- Russia is assumed to be price taker and price shocks are exogenous.
With greater financial integration, energy production is more volatile

- Russia is assumed to be price taker and price shocks are exogenous
- exports rise when prices rise temporarily and they can invest earnings
With greater financial integration, energy production is more volatile
- Russia is assumed to be price taker and price shocks are exogenous
- exports rise when prices rise temporarily and they can invest earnings
- Energy producer can respond to price shocks and still smooth consumption
With greater financial integration, energy production is more volatile.

- Russia is assumed to be a price taker and price shocks are exogenous.
- Exports rise when prices rise temporarily and they can invest earnings.

Energy producer can respond to price shocks and still smooth consumption.

 Consumption is smoother for both Home and Foreign.
Implications

- Large effect of financial regimes on consumption and, hence, welfare - larger effect for Home since it is importing the intensively used input.
Implications

- Large effect of financial regimes on consumption and, hence, welfare - larger effect for Home since it is importing the intensively used input.
- Oil output responds faster to price shocks in financially open regimes.
Implications

- Large effect of financial regimes on consumption and, hence, welfare - larger effect for Home since it is importing the intensively used input.
- Oil output responds faster to price shocks in financially open regimes.
- If OPEC oil supply was not perfectly elastic, then Russian oil response would smooth world supply, and consuming countries would benefit even more.
Implications

- Large effect of financial regimes on consumption and, hence, welfare - larger effect for Home since it is importing the intensively used input.
- Oil output responds faster to price shocks in financially open regimes.
- If OPEC oil supply was not perfectly elastic, then Russian oil response would smooth world supply, and consuming countries would benefit even more.
- **Conjecture**: If we introduce lumpy investment process for energy – high fixed costs – then we expect financial integration has bigger effect on energy security.
Implications

- Russia benefits from financial integration and international risk sharing
Russia benefits from financial integration and international risk sharing
ROW benefits from financial integration and international risk sharing
Implications

- Russia benefits from financial integration and international risk sharing
- ROW benefits from financial integration and international risk sharing
- Exchange of oil for a share of ROW return
Russia benefits from financial integration and international risk sharing
ROW benefits from financial integration and international risk sharing
Exchange of oil for a share of ROW return
Efficient solution risk sharing
Implications

- Russia benefits from financial integration and international risk sharing
- ROW benefits from financial integration and international risk sharing
- Exchange of oil for a share of ROW return
- Efficient solution risk sharing
 - Russian foreign investment
Implications

- Russia benefits from financial integration and international risk sharing
- ROW benefits from financial integration and international risk sharing
- Exchange of oil for a share of ROW return
- Efficient solution risk sharing
 - Russian foreign investment
 - Inward investment in production
Implications

- Russia benefits from financial integration and international risk sharing
- ROW benefits from financial integration and international risk sharing
- Exchange of oil for a share of ROW return
- Efficient solution risk sharing
 - Russian foreign investment
 - Inward investment in production

→ one big question
Russia’s Paradoxical Solution

- Russia chooses not to engage in such risk sharing.
Russia’s Paradoxical Solution

- Russia chooses not to engage in such risk sharing.
- Foreign investment is useful for technology but not risk sharing.
Russia’s Paradoxical Solution

- Russia chooses not to engage in such risk sharing.
- Foreign investment is useful for technology but not risk sharing.
- Putin on Foreign Investment
Russia’s Paradoxical Solution

- Russia chooses not to engage in such risk sharing.
- Foreign investment is useful for technology but not risk sharing
- Putin on Foreign Investment
 - “Russia needs high quality foreign investment for development and modernization so that our industry can obtain capital, advanced technologies, and efficient systems for organization and management of production.”
Russia’s Paradoxical Solution

- Russia chooses not to engage in such risk sharing.
- Foreign investment is useful for technology but not risk sharing.
- Putin on Foreign Investment
 - “Russia needs high quality foreign investment for development and modernization so that our industry can obtain capital, advanced technologies, and efficient systems for organization and management of production.”
 - no mention of risk sharing or capital.
Russia’s Paradoxical Solution

- Russia chooses not to engage in such risk sharing.
- Foreign investment is useful for technology but not risk sharing
- Putin on Foreign Investment
 - “Russia needs high quality foreign investment for development and modernization so that our industry can obtain capital, advanced technologies, and efficient systems for organization and management of production.”
 - no mention of risk sharing or capital
- Russia chooses self insurance, manage the problem of its future oil on its own
The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?
Russia’s Paradoxical Solution: Why?

- The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?
 - Ignorance (they are not as smart as me)?
Russia’s Paradoxical Solution: Why?

- The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?
 - Ignorance (they are not as smart as me)?
- Efficient solution has impacts for Putin’s protection racket.
Russia’s Paradoxical Solution: Why?

- The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?
 - Ignorance (they are not as smart as me)?
- Efficient solution has impacts for Putin’s protection racket.
 - RMS is core of Putin’s power and oligarch stability
The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?

- Ignorance (they are not as smart as me)?

Efficient solution has impacts for Putin’s protection racket.

- RMS is core of Putin’s power and oligarch stability
- To induce foreign companies to commit to Russia on scale needed requires change of RMS – challenge to Putin’s system of control
The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?
- Ignorance (they are not as smart as me)?

Efficient solution has impacts for Putin’s protection racket.
- RMS is core of Putin’s power and oligarch stability
- To induce foreign companies to commit to Russia on scale needed requires change of RMS – challenge to Putin’s system of control

Political control of oil rents is more important to leadership than efficient solution
Russia’s Paradoxical Solution: Why?

- The efficient solution is in Russia’s own self-interest. Why does Russia not choose the risk-sharing solution?
 - Ignorance (they are not as smart as me)?

- Efficient solution has impacts for Putin’s protection racket.
 - RMS is core of Putin’s power and oligarch stability
 - To induce foreign companies to commit to Russia on scale needed requires change of RMS – challenge to Putin’s system of control

- Political control of oil rents is more important to leadership than efficient solution
 - But this has costs since Russia must still secure future rents
Could it be a sovereignty issue? Maybe too economistic-focused?
- Could it be a sovereignty issue? Maybe too economistic-focused?
 - No. Lena Goldfields.
Could it be a sovereignty issue? Maybe too economistic-focused?

- No. Lena Goldfields.
 - Especially useful for extractive industries. Modern example is BP
Could it be a sovereignty issue? Maybe too economistic-focused?

- No. Lena Goldfields.
 - Especially useful for extractive industries. Modern example is BP

- Petrostates could possibly be manipulated. Nationalize companies for employment.
Alternative Explanation

- Could it be a sovereignty issue? Maybe too economistic-focused?
 - No. Lena Goldfields.
 - Especially useful for extractive industries. Modern example is BP
- Petrostates could possibly be manipulated. Nationalize companies for employment.
 - Russia still has 10,000 nukes.
Could it be a sovereignty issue? Maybe too economistic-focused?
 No. Lena Goldfields.
 Especially useful for extractive industries. Modern example is BP

Petrostates could possibly be manipulated. Nationalize companies for employment.
 Russia still has 10,000 nukes.
 Russia ties for third as literature superpower.
Russia is not Nigeria

United States, 8,500
Russia, 10,000

- Russia
- United States
- France
- China
- United Kingdom
- Pakistan
- India
- Israel
- North Korea
Insistence on self-insurance implies Russia must finance:
Insistence on self-insurance implies Russia must finance:
- stabilization fund
Insistence on self-insurance implies Russia must finance:

- stabilization fund
- infrastructure investment in new oil
Insistence on self-insurance implies Russia must finance:

- stabilization fund
- infrastructure investment in new oil
- pipeline investment to secure supply channels for gas
Insistence on self-insurance implies Russia must finance:

- stabilization fund
- infrastructure investment in new oil
- pipeline investment to secure supply channels for gas

Foreign investment would relieve the constraint, but Putin avoids this solution.
Insistence on self-insurance implies Russia must finance:

- stabilization fund
- infrastructure investment in new oil
- pipeline investment to secure supply channels for gas

Foreign investment would relieve the constraint, but Putin avoids this solution.

Battle over tax incentives, but clearly it has to come out of rent.
Insistence on self-insurance implies Russia must finance:

- stabilization fund
- infrastructure investment in new oil
- pipeline investment to secure supply channels for gas

Foreign investment would relieve the constraint, but Putin avoids this solution.

Battle over tax incentives, but clearly it has to come out of rent

Government is the residual claimant
The Future

- PPR is a result of funnel economy and mutual conflict equilibrium

People dislike Putin’s behavior, but no easy solution to replace him. If anyone tells you Putin’s rule is bound to end, ask them to explain, How? In your scenario, What happens to the Protection Racket? What will the oligarchs do?

I don’t see the path
PPR is a result of funnel economy and mutual conflict equilibrium

The PR is a stable equilibrium, but there is no easy way out
The Future

- PPR is a result of funnel economy and mutual conflict equilibrium
- The PR is a stable equilibrium, but there is no easy way out
 - The PR prevents real reform – oligarch control

People dislike Putin’s behavior, but no easy solution to replace him.

If anyone tells you Putin’s rule is bound to end, ask them to explain, How? In your scenario, What happens to the Protection Racket? What will the oligarchs do?

I don’t see the path
The Future

- PPR is a result of funnel economy and mutual conflict equilibrium
- The PR is a stable equilibrium, but there is no easy way out
 - The PR prevents real reform – oligarch control
 - Until funnel economy is flipped over there is no easy way to replace PR
The Future

- PPR is a result of funnel economy and mutual conflict equilibrium
- The PR is a stable equilibrium, but there is no easy way out
 - The PR prevents real reform – oligarch control
 - Until funnel economy is flipped over there is no easy way to replace PR
- People dislike Putin’s behavior, but no easy solution to replace him.
The Future

- PPR is a result of funnel economy and mutual conflict equilibrium
- The PR is a stable equilibrium, but there is no easy way out
 - The PR prevents real reform – oligarch control
 - Until funnel economy is flipped over there is no easy way to replace PR
- People dislike Putin’s behavior, but no easy solution to replace him.
 - If anyone tells you Putin’s rule is bound to end, ask them to explain, How? In your scenario, What happens to the Protection Racket? What will the oligarchs do?
The Future

- PPR is a result of funnel economy and mutual conflict equilibrium
- The PR is a stable equilibrium, but there is no easy way out
 - The PR prevents real reform – oligarch control
 - Until funnel economy is flipped over there is no easy way to replace PR
- People dislike Putin’s behavior, but no easy solution to replace him.
 - If anyone tells you Putin’s rule is bound to end, ask them to explain, How? In your scenario, What happens to the Protection Racket? What will the oligarchs do?
- I don’t see the path
The End

Thank You
Figure: Soviet and Russian Oil and Gas Rents, 1970 – 2011